شنبه 9 خرداد 1394  07:36 ق.ظ    ویرایش: - -

عنوان انگلیسی مقاله: Efficient Text-Independent Speaker Verification with Structural Gaussian Mixture Models and Neural Network
عنوان فارسی مقاله: تعیین هویت گوینده مستقل از متن، توسط مدل های مخلوط گاوس ساختاری و شبکه های عصبی
دسته: کامپیوتر و فناوری اطلاعات
فرمت فایل ترجمه شده: WORD (قابل ویرایش)
تعداد صفحات فایل ترجمه شده: 26
لینک دریافت رایگان نسخه انگلیسی مقاله: دانلود
ترجمه ی سلیس و روان مقاله آماده ی خرید می باشد.
_______________________________________
چکیده ترجمه:
چکیده – ما سیستم یکپارچه ای  را در ارتباط با مدل های مخلوط  گاوس ساختاری (SGMM) و شبکه های عصبی به منظور دستیابی به راندمان محاسباتی و دقت بالا در ارتباط با تعیین هویت گوینده ارائه می دهیم. مدل پس زمینه ساختاری (SBM) در ابتدا از طریق خوشه بندی زنجیره ای تمام موئلفه های مخلوط گاوس در ارتباط با مدل پس زمینه ساختاری ایجاد می گردد. به این ترتیب، یک فضای اکوستیک به بخش های چندگانه ای در سطوح مختلف قدرت تشخیص، جزء بندی می گردد. برای هر یک از گوینده های مورد نظر، مدل مدل مخلوط  گاوس ساختاری (SGMM) از طریق استدلال حداکثری (MAP) سازگار با مدل پس زمینه ساختاری (SBM) ایجاد می گردد. در هنگام تست، تنها زیرمجموعه کمی از موئلفه های مخلوط گاوس برای هر بردار مختصات محاسبه می گردد تا هزینه محاسبه را به طور قابل توجهی کاهش دهد. علاوه بر این، امتیازات حاصل شده در لایه های مدل های درخت ساختار، برای تصمیم گیری نهایی از طریق شبکه عصبی ادغام می گردند. وضعیت های مختلفی در بررسی های انجام شده بر روی داده های حاصل از گفتگوهای تلفنی مورد استفاده در ارزیابی هویت گوینده NIST ، مقایسه شد. نتایج تجربی نشان می دهد که کاهش محاسبه توسط فاکتور 17 از طریق 5% کاهش نسبی در میزان خطای هم ارز (EER) در مقایسه با خطو مبنا، حاصل می گردد. روش SGMM-SBM (مدل مخلوط  گاوس ساختاری- مدل پس زمینه ساختاری)، مزایایی را نسبت به  مدل اخیرا مطرح شده GMM (مدل مخلوط گاوس) داشته، که شامل سرعت بالاتر و عملکرد تشخیص بهتر، می باشد.
کلیداژه: خوشه بندی گاوس، شبکه عصبی، تعیین هویت گوینده، مدل مخلوط گاوس ساختاری
1. مقدمه
تحقیقات بر روی تشخیص گوینده که شامل تعیین هویت و تطبیق موارد می باشد به عنوان یک مورد فعال برای چندین دهه به شمار آورده می شود. هدف این می باشد تا تجهیزانت داشته باشیم که به صورت اتوماتیک فرد خاصی را تعیین هویت کرده یا فرد را از طریق صدای او تشخیص دهیم. بنابر روش های زیست سنجی، تشخیص صدای افراد می تواند در بسیاری از موارد همانند، شبکه های امنیتی، تراکنش های تلفنی و دسترسی به بخش ها کاربرد داشته باشد. گوینده ها به دو گروه تقسیم می شوند.گوینده های هدفمند و گوینده های غیرهدفمند.


   


نظرات()  
جمعه 8 خرداد 1394  08:19 ق.ظ    ویرایش: - -

جهت اخذ درجه کارشناسی
عنوان کامل: پروژه مدل سازی رآکتور شیمیایی با شبکه های عصبی
دسته: مکانیک
فرمت فایل: WORD (قابل ویرایش)
تعداد صفحات پروژه:  130
______________________________________________________
بخشی از مقدمه:
 در این پروژه، ورودی‌ها و خروجی‌های یك سیستم چند ورودی و چند خروجی غیر خطی، برای ایجاد یك مدل دینامیكیِ هوشمند، استفاده شده است. بنابراین انتخاب شبكه‌های عصبی مصنوعی  از نوع پرسپترون‌های چندلایه  برای این منظور مناسب است. در كنار این نوع از مدل‌سازی، استفاده از یك شیوه‌ی مناسب برای كنترل پیشگویانه (پیش بینانه)ی مدل یاد شده، ضروری است. 
مدل‌های برگشتی تصحیح شونده كه از قوانین تعدیل ماتریس‌های وزنی مسیرهای ارتباطی بین نرون‌های مدل استفاده می‌كنند، در این پروژه به كار گرفته شده‌اند. 
این قوانین برای آموزش سیستم، جهت كنترل و دستیابی به خروجی مطلوب در زمان‌های بعدی به كار می‌روند. 
فراگیری در این سیستم نیز از نوع فراگیری با سرپرست  می‌باشد؛ به این صورت كه معادله‌ی دیفرانسیل دینامیكیِ سیستم در دسترس است و بنابراین مقادیر مطلوب برای متغیر هدف، كه سیستم باید به آن برسد، برای زمان‌های آینده مشخص می‌باشد و خروجی سیستم با استفاده از یك كنترل‌كننده‌ی پیش‌بین، همواره باید به این اهداف دست یابد. سیستم مورد مطالعه در این پروژه، یك رآكتور شیمیایی است كه برای اختلاط پیوسته‌ی مواد شیمیایی واكنش دهنده با غلظت‌ها و مقادیر تعریف شده و تولید یك ماده‌ی محصول با یك غلظت متغیر با زمان  به كار می‌رود؛ كه میزان مطلوب این غلظت در یك زمان خاص، به‌عنوان هدف مطلوبی است كه سیستم باید به آن دست یابد.
همچنین به‌جای یك سیستم واقعی، از یك مدل نرم‌افزاری برای جمع‌آوری داده‌های ورودی و خروجی استفاده می شود و در نهایت، نتایج این مدل سازی موفقیت‌آمیز، توانایی روش‌های مدل سازی هوشمند را همان‌گونه كه در این تحقیق آمده است، اثبات می‌كند.
در این پروژه، ورودی‌ها و خروجی‌های یك سیستم چند ورودی و چند خروجی غیر خطی، برای ایجاد یك مدل دینامیكیِ هوشمند، استفاده شده است. بنابراین انتخاب شبكه‌های عصبی مصنوعی  از نوع پرسپترون‌های چندلایه  برای این منظور مناسب است. در كنار این نوع از مدل‌سازی، استفاده از یك شیوه‌ی مناسب برای كنترل پیشگویانه (پیش بینانه)ی مدل یاد شده، ضروری است. 
مدل‌های برگشتی تصحیح شونده كه از قوانین تعدیل ماتریس‌های وزنی مسیرهای ارتباطی بین نرون‌های مدل استفاده می‌كنند، در این پروژه به كار گرفته شده‌اند. 
 

   


نظرات()  
  • کل صفحات:2  
  • 1
  • 2
  •   

ساعت مچی زنانه

شبکه اجتماعی فارسی کلوب | Buy Website Traffic | Buy Targeted Website Traffic